Washtenaw Community College Comprehensive Report

NCT 255 Probes, Macros and Conversational Programming for CNC Effective Term: Fall 2022

Course Cover

College: Advanced Technologies and Public Service Careers **Division:** Advanced Technologies and Public Service Careers

Department: Advanced Manufacturing

Discipline: Numerical Control

Course Number: 255 Org Number: 14400

Full Course Title: Probes, Macros and Conversational Programming for CNC

Transcript Title: Probes, Macros Convers CNC Mach **Is Consultation with other department(s) required:** No

Publish in the Following:

Reason for Submission: Inactivation

Change Information:

Other:

Rationale: Not able to run course.

Proposed Start Semester: Fall 2021

Course Description: In this course, students will learn the fundamentals of intuitive probing system (IPS) and visual quick code (VQC) for creation of probing cycles for CNC machine tools. The offset tool setter (OTS), the optical measurement probe (OMP) outputs and user defined inspection routines will be integrated into part programs. Students will setup and calibrate the OTS for various operational settings as well as understand the method for calibrating the OMP.

Course Credit Hours

Variable hours: No

Credits: 4

Lecture Hours: Instructor: 45 Student: 45

Lab: Instructor: 45 Student: 45 Clinical: Instructor: 0 Student: 0

Total Contact Hours: Instructor: 90 Student: 90

Repeatable for Credit: NO Grading Methods: Letter Grades

Are lectures, labs, or clinicals offered as separate sections?: NO (same sections)

College-Level Reading and Writing

College-level Reading & Writing

College-Level Math

No Level Required

Requisites

Prerequisite

NCT 121 minimum grade "c"

and

Prerequisite

NCT 221

or

Level II Prerequisite

Industry CNC machining experience.

General Education

Request Course Transfer

Proposed For:

Student Learning Outcomes

1. Apply the intuitive probing system (IPS) for the set-up of a part, and use visual quick codes (VQC) for creation of a machine tool program.

Assessment 1

Assessment Tool: Capstone project

Assessment Date: Fall 2016

Assessment Cycle: Every Three Years Course section(s)/other population: all Number students to be assessed: all

How the assessment will be scored: departmentally-developed rubric

Standard of success to be used for this assessment: 75% of the students will score 75% or

greater.

Who will score and analyze the data: Department Faculty

2. Integrate offset tool setter (OTS) and optical measurement probing (OMP) lines into programs for verification of tool conditions and optimizing cutting operations.

Assessment 1

Assessment Tool: Capstone project

Assessment Date: Fall 2019

Assessment Cycle: Every Three Years Course section(s)/other population: all Number students to be assessed: all

How the assessment will be scored: departmentally-developed rubric

Standard of success to be used for this assessment: 75% of the students will score 75% or

greater.

Who will score and analyze the data: Department Faculty

3. Apply the calibration process for alignment of the optical measurement probe to stage the offset tool setter (OTS) for use in various machining setups (5 axis machining).

Assessment 1

Assessment Tool: Capstone project

Assessment Date: Fall 2019

Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All

How the assessment will be scored: departmentally-developed rubric

Standard of success to be used for this assessment: 75% of the students will score 75% or greater.

Who will score and analyze the data: Department Faculty

Course Objectives

1. Apply fundamentals of probing using IPS at MCU to set of height, CDC and work offsets.

- 2. Apply fundamentals of probing using IPS at MCU to define tool types, tool lengths and breakage detection.
- 3. Use Visual Quick Code for machining part features, location of external/internal corners, location of external/internal centers, location of single surface, and rotational information.
- 4. Create basic macros with input/use of variables, mathematical expressions, logical statements, structures and G65 alias.
- 5. Use basic macros to write programs for families of parts.
- 6. Create system macros: OTS macros for tool detection, OMP macros for part location, and OMP macros for inspection.
- 7. Apply principles of setup and calibration of the OTS system: maintain the OTS, assemble the OTS to machine table, and calibrate the OTS.
- 8. Apply principles of setup and calibration of OMP system: maintain the OMP, assemble the ceramic stylus to body, and align the stylus.

New Resources for Course

Currently Purchasing new equipment with offset tool setters and optical measurement probes.

Course Textbooks/Resources

Textbooks Manuals Periodicals Software

Equipment/Facilities

Level III classroom Computer workstations/lab

Reviewer	Action	<u>Date</u>
Faculty Preparer:		
Allan Coleman	Faculty Preparer	Nov 24, 2021
Department Chair/Area Director:		
Allan Coleman	Recommend Approval	Dec 02, 2021
Dean:		
Jimmie Baber	Recommend Approval	Dec 05, 2021
Curriculum Committee Chair:		
Randy Van Wagnen	Reviewed	Feb 22, 2022
Assessment Committee Chair:		
Vice President for Instruction:		
Kimberly Hurns	Approve	Feb 23, 2022

Washtenaw Community College Comprehensive Report

NCT 255 Probes, Macros and Conversational Programming for CNC Effective Term: Fall 2016

Course Cover

Division: Advanced Technologies and Public Service Careers

Department: Industrial Technology **Discipline:** Numerical Control

Course Number: 255 Org Number: 14400

Full Course Title: Probes, Macros and Conversational Programming for CNC

Transcript Title: Probes, Macros Convers CNC Mach

Is Consultation with other department(s) required: No

Publish in the Following:

Reason for Submission: New Course

Change Information:

Rationale: This class is being created for an advanced certificate in the advanced manufacturing program. This course is needed to get students skills to operate new equipment being purchased for our program.

Proposed Start Semester: Fall 2016

Course Description: In this course, students will learn the fundamentals of intuitive probing system (IPS) and visual quick code (VQC) for creation of probing cycles for CNC machine tools. The offset tool setter (OTS), the optical measurement probe (OMP) outputs and user defined inspection routines will be integrated into part programs. Students will setup and calibrate the OTS for various operational settings as well as understand the method for calibrating the OMP.

Course Credit Hours

Variable hours: No

Credits: 4

Lecture Hours: Instructor: 45 Student: 45

Lab: Instructor: 45 Student: 45 Clinical: Instructor: 0 Student: 0

Total Contact Hours: Instructor: 90 Student: 90

Repeatable for Credit: NO Grading Methods: Letter Grades

Are lectures, labs, or clinicals offered as separate sections?: NO (same sections)

College-Level Reading and Writing

College-level Reading & Writing

College-Level Math

No Level Required

Requisites

Prerequisite

NCT 121 minimum grade "c"

and

Prerequisite

NCT 221

Level II Prerequisite

Industry CNC machining experience.

General Education

Request Course Transfer

Proposed For:

Student Learning Outcomes

1. Apply the intuitive probing system (IPS) for the set-up of a part, and use visual quick codes (VQC) for creation of a machine tool program.

Assessment 1

Assessment Tool: Capstone project

Assessment Date: Fall 2016

Assessment Cycle: Every Three Years Course section(s)/other population: all Number students to be assessed: all

How the assessment will be scored: departmentally-developed rubric

Standard of success to be used for this assessment: 75% of the students will score

75% or greater.

Who will score and analyze the data: Department Faculty

2. Integrate offset tool setter (OTS) and optical measurement probing (OMP) lines into programs for verification of tool conditions and optimizing cutting operations.

Assessment 1

Assessment Tool: Capstone project

Assessment Date: Fall 2019

Assessment Cycle: Every Three Years Course section(s)/other population: all Number students to be assessed: all

How the assessment will be scored: departmentally-developed rubric

Standard of success to be used for this assessment: 75% of the students will score

75% or greater.

Who will score and analyze the data: Department Faculty

3. Apply the calibration process for alignment of the optical measurement probe to stage the offset tool setter (OTS) for use in various machining setups (5 axis machining).

Assessment 1

Assessment Tool: Capstone project

Assessment Date: Fall 2019

Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All

How the assessment will be scored: departmentally-developed rubric

Standard of success to be used for this assessment: 75% of the students will score

75% or greater.

Who will score and analyze the data: Department Faculty

Course Objectives

- 1. Apply fundamentals of probing using IPS at MCU to set of height, CDC and work offsets.
- 2. Apply fundamentals of probing using IPS at MCU to define tool types, tool lengths and breakage detection.
- 3. Use Visual Quick Code for machining part features, location of external/internal corners, location of external/internal centers, location of single surface, and rotational information.
- 4. Create basic macros with input/use of variables, mathematical expressions, logical

- statements, structures and G65 alias.
- 5. Use basic macros to write programs for families of parts.
- 6. Create system macros: OTS macros for tool detection, OMP macros for part location, and OMP macros for inspection.
- 7. Apply principles of setup and calibration of the OTS system: maintain the OTS, assemble the OTS to machine table, and calibrate the OTS.
- 8. Apply principles of setup and calibration of OMP system: maintain the OMP, assemble the ceramic stylus to body, and align the stylus.

New Resources for Course

Currently Purchasing new equipment with offset tool setters and optical measurement probes.

Course Textbooks/Resources

Textbooks Manuals Periodicals Software

Equipment/Facilities

Level III classroom Computer workstations/lab

Reviewer	<u>Action</u>	<u>Date</u>
Faculty Preparer:		
Thomas Penird	Faculty Preparer	Aug 29, 2015
Department Chair/Area Director:		
Thomas Penird	Recommend Approval	Aug 29, 2015
Dean:		
Brandon Tucker	Recommend Approval	Oct 06, 2015
Curriculum Committee Chair:		
Kelley Gottschang	Recommend Approval	Nov 30, 2015
Assessment Committee Chair:		
Michelle Garey	Recommend Approval	Dec 01, 2015
Vice President for Instruction:		
Michael Nealon	Approve	Dec 14, 2015